淺談復合儲能的微電網(wǎng)運行的切換控制策略及安科瑞儲能能量管理系統(tǒng)
安科瑞電氣股份有限公司
聯(lián)系人:邵怡倩
電話:18702106120
摘要:微電網(wǎng)是實現(xiàn)主動式配電網(wǎng)的一種有效形式,微電網(wǎng)技術能夠促進分布式發(fā)電的大規(guī)模接入。針對微電網(wǎng)中并網(wǎng)模式和孤島模式之間的切換,提出一種含復合儲能裝置的微電網(wǎng)優(yōu)化控制策略。這種復合儲能的微電網(wǎng)優(yōu)化控制將超級電容器和蓄電池的優(yōu)點結合到一起,用于由分布式電源作為主控式電源的微電網(wǎng),以實現(xiàn)微電網(wǎng)平滑切換的目標。
微電網(wǎng)是一種將分布式電源、儲能裝置、負荷、變流器以及監(jiān)控保護裝置等有機整合在一起的小型發(fā)配電系統(tǒng)。它可以充分發(fā)揮分布式發(fā)電在經(jīng)濟、節(jié)能及環(huán)保中的優(yōu)勢,協(xié)調(diào)與大電網(wǎng)的矛盾,具有較高的靈活性與可調(diào)度性。微電網(wǎng)中主要電源的輸出功率具有較大的波動性和隨機性,利用儲能技術可以解決這些問題。微電網(wǎng)對儲能既有速度方面的要求,又有容量方面的要求,一種儲能元件很難同時滿足這些要求,因此,復合儲能技術需要深入研究。,蓄電池與超級電容器組成的復合儲能系統(tǒng),具有容量密度高、功率密度大、使用壽命長等特點,對于平抑由分布式能源組成的微電網(wǎng)的功率平衡及**穩(wěn)定運行具有積極的意義。
近年來,許多專家學者利用混合儲能平抑間隙式電源功率波動方面進行了有效研究。將鋰電池與超級電容器的組合形式應用在獨立光伏電站,快速平衡系統(tǒng)瞬時功率,維持系統(tǒng)的可靠性;將鋰電池與超級電容器組成的復合儲能裝置應用于并網(wǎng)光伏電站,優(yōu)化了光伏電站的輸出功率、降低儲能系統(tǒng)運行成本。利用超級電容器與蓄電池的組合,提高儲能系統(tǒng)的技術經(jīng)濟性?;谏鲜鲅芯靠芍沙夒娙萜骱托铍姵亟M成的復合儲能系統(tǒng),在應對由分布式新能源組成的微電網(wǎng)頻繁快速功率變化、無縫切換控制等方面具有良好的應用前景,但目前在關于這方面研究應用的文獻還不多。
本文在詳細分析了由風電機組、光伏陣列組成的微電網(wǎng)**穩(wěn)定運行對儲能需求的基礎上,建立了風電機組、光伏陣列及超級電容器和蓄電池組成的復合儲能系統(tǒng)及控制模型。提出了適應于微電網(wǎng)的復合儲能結構及優(yōu)化控制策略
1光伏電池的模型
光伏電池陣列由一定數(shù)量的單體電池經(jīng)串并聯(lián)構成。它的輸出功率與光照強度、環(huán)境溫度等因素有關。
2復合儲能裝置模型
由蓄電池和超級電容器組成的復合儲能系統(tǒng)裝置等效電路。
超級電容器由于其容量大,充放電周期長,可用一個理想電壓源和一個等效內(nèi)阻串聯(lián)來等效。超級電容器和蓄電池由儲能控制器控制經(jīng)雙向變換器(DC/DC)后接入直流母線。這種連接方式的優(yōu)點是可以使蓄電池、超級電容器工作在不同的電壓范圍,是兩者的容量配置與組合形式靈活可變。
在復合儲能的容量配置方面,蓄電池的容量應能保證微電網(wǎng)中重要負荷的正常供電;超級電容器主要應對切換瞬間的功率平衡,所配容量應滿足微電網(wǎng)中所有負荷的功率要求。
3系統(tǒng)控制
并網(wǎng)運行控制策略
當并網(wǎng)運行時,微電網(wǎng)內(nèi)的功率缺額由配電網(wǎng)來平衡,頻率調(diào)整和電壓控制都由配電網(wǎng)來負責,網(wǎng)內(nèi)分布式發(fā)電(DistributedGeneration,DG)逆變器均采用P/Q控制方式。
孤島運行控制策略
當孤島運行時,復合儲能系統(tǒng)采用U/F控制方式,為微電網(wǎng)提供頻率和電壓支持,并跟蹤負荷的變化,其余DG采用P/Q控制方式??刂屏鞒倘鐖D5所示。
4復合儲能控制策略
復合儲能系統(tǒng)的雙向DC/DG變換器采用Buck/Boost功率變換器形式,這種結構體積小、工作效率高。當S?動作,S?驅(qū)動閉鎖時,變換器處于Buck模式;當S,驅(qū)動閉鎖,S?動作時,變換器處于Boost模式。這種策略可以靈活多層次地設定蓄電池的充放電電流及其相互之間的轉(zhuǎn)換過程。
5無縫切換控制策略
當微電網(wǎng)處于并網(wǎng)模式、孤島模式或者在并網(wǎng)/孤島無縫切換模式的情況下,微電網(wǎng)主要的任務就是保證微電網(wǎng)系統(tǒng)內(nèi)的所有敏感負荷可靠正常的運行;另一方面,在并網(wǎng)模式和孤島模式之間進行無縫切換的過程中,微電網(wǎng)內(nèi)負荷端的電壓幅值和相位不能發(fā)生較大的變化;同時在并網(wǎng)過程中不能產(chǎn)生很大的電流沖擊,導致系統(tǒng)的崩潰。只要上述條件能夠得到保證,微電網(wǎng)就可以在并網(wǎng)模式和孤島模式之間成功地進行無縫切換。
當微電網(wǎng)在并網(wǎng)模式和孤島模式之間進行無縫切換時,不僅需要保證控制策略的成功轉(zhuǎn)換,而且需要PCC點靜態(tài)開關的準確配合。如果PCC點靜態(tài)開關配合不當,很可能就會導致無縫切換的失敗。此外還需要依靠大電網(wǎng)狀態(tài)快速準確的檢測,并網(wǎng)時電壓的同步檢測等諸多方面,只要有一方面配合不當,很可能就會導致無縫切換的失敗。如果切換失敗,將導致很嚴重的后果。例如,當微電網(wǎng)系統(tǒng)從并網(wǎng)模式向孤島模式轉(zhuǎn)換時,如果PCC點的靜態(tài)開關沒有正常關斷,就可能導致大電網(wǎng)的**影響進入微電網(wǎng),如果沒有敏感負荷實時的保護,微電網(wǎng)系統(tǒng)內(nèi)的敏感負荷就會全部損壞。
在并網(wǎng)運行情況下,當配電網(wǎng)故障或電能質(zhì)量不能滿足要求時,檢測公共耦合點(PCC)電壓、頻率,超出允許的范圍時,微電網(wǎng)需要與配電網(wǎng)快速斷開,轉(zhuǎn)入孤島運行方式,儲能系統(tǒng)的控制方式由P/Q控制轉(zhuǎn)變?yōu)閁/F控制方式,其余DG仍采用P/Q控制方式。此時,若網(wǎng)內(nèi)功率不能保持平衡,就要考慮切負荷或者切機;在主網(wǎng)恢復正常運行后,需要將微電網(wǎng)與配電網(wǎng)重新連接。此時,為了避免互聯(lián)過程中對配電網(wǎng)造成較大的暫態(tài)沖擊,對微電網(wǎng)進行同期,為此,檢測公共耦合點微網(wǎng)側(cè)及配電網(wǎng)側(cè)的電壓、頻率及相角,當對應量相差在允許的范圍之內(nèi)時,完成同期并列。之后,復合儲能系統(tǒng)由U/F控制方式轉(zhuǎn)變?yōu)镻/Q控制方式,并恢復負荷或DG。
3.仿真結果及分析
光伏發(fā)電容量為15kW,風力發(fā)電為20kW;蓄電池容量為100A·h,額定電壓為240V,額定放電率為0.3C,超級電容器為10F,額定電壓360V;負荷功率為40+j10kVA。微電網(wǎng)并網(wǎng)運行,所有DG均采用P/Q控制,在1s時,配網(wǎng)發(fā)生故障,檢測到電壓或頻率越限,保護動作,微電網(wǎng)與主配網(wǎng)斷開,由并網(wǎng)轉(zhuǎn)人孤網(wǎng)運行,儲能裝置控制方式由P/Q轉(zhuǎn)為U/F方式;在2s時,配網(wǎng)故障消除,經(jīng)檢測,微電網(wǎng)與配電網(wǎng)側(cè)電壓、頻率、相角差符合同期要求,保護動作,微電網(wǎng)重新與配電網(wǎng)并列運行,電氣量恢復到孤網(wǎng)運行前的狀態(tài)。
4.Acrel-2000MG微電網(wǎng)能量管理系統(tǒng)
Acrel-2000MG微電網(wǎng)能量管理系統(tǒng),是安科瑞研發(fā)的新型電力系統(tǒng)下微電網(wǎng)監(jiān)控系統(tǒng)與微電網(wǎng)能量管理系統(tǒng),滿足光伏系統(tǒng)、風力發(fā)電、儲能系統(tǒng)以及充電樁的接入,全天候進行數(shù)據(jù)采集分析,直接監(jiān)視光伏、風能、儲能系統(tǒng)、充電樁運行狀態(tài)及健康狀況,集監(jiān)控系統(tǒng)、能量管理為一體。該系統(tǒng)在**穩(wěn)定的基礎上以經(jīng)濟優(yōu)化運行為目標,促進可再生能源應用,提高電網(wǎng)運行穩(wěn)定性、補償負荷波動;有效實現(xiàn)用戶側(cè)的需求管理、消除晝夜峰谷差、平滑負荷,提高電力設備運行效率、降低供電成本。為企業(yè)微電網(wǎng)能量管理提供**、可靠、經(jīng)濟運行提供了全新的解決方案。
4.1系統(tǒng)功能
微電網(wǎng)能量管理系統(tǒng)人機界面友好,應能夠以系統(tǒng)一次電氣圖的形式直觀顯示各電氣回路的運行狀態(tài),實時監(jiān)測各回路電壓、電流、功率、功率因數(shù)等電參數(shù)信息,動態(tài)監(jiān)視各回路斷路器、隔離開關等合、分閘狀態(tài)及有關故障、告警等信號。
可以對分布式電源、儲能系統(tǒng)進行發(fā)電管理,可以對儲能系統(tǒng)進行狀態(tài)管理,能夠根據(jù)儲能系統(tǒng)的荷電狀態(tài)進行及時告警,并支持定期的電池維護。
微電網(wǎng)能量管理系統(tǒng)的監(jiān)控系統(tǒng)界面包含微電網(wǎng)光伏、風電、儲能、充電樁及總體負荷組成情況,包括收益信息、天氣信息、節(jié)能減排信息、功率信息、電量信息、電壓電流情況等。根據(jù)不同的需求,也可將充電,儲能及光伏系統(tǒng)信息進行顯示。
包括系統(tǒng)主接線圖、光伏信息、風電信息、儲能信息、充電樁信息、通訊狀況及一些統(tǒng)計列表等。
光伏系統(tǒng)界面展示對光伏系統(tǒng)信息,主要包括逆變器直流側(cè)、交流側(cè)運行狀態(tài)監(jiān)測及報警、逆變器及電站發(fā)電量統(tǒng)計及分析、并網(wǎng)柜電力監(jiān)測及發(fā)電量統(tǒng)計、電站發(fā)電量年有效利用小時數(shù)統(tǒng)計、發(fā)電收益統(tǒng)計、碳減排統(tǒng)計、輻照度/風力/環(huán)境溫濕度監(jiān)測、發(fā)電功率模擬及效率分析;同時對系統(tǒng)的總功率、電壓電流及各個逆變器的運行數(shù)據(jù)進行展示。
儲能系統(tǒng)界面展示本系統(tǒng)的儲能裝機容量、儲能當前充放電量、收益、SOC變化曲線以及電量變化曲線。
儲能系統(tǒng)PCS參數(shù)設置界面
儲能系統(tǒng)BMS參數(shù)設置界面展示對BMS的參數(shù)進行設置,主要包括電芯電壓、溫度保護限值、電池組電壓、電流、溫度限值等。
儲能系統(tǒng)PCS電網(wǎng)側(cè)數(shù)據(jù)界面、儲能系統(tǒng)PCS交流側(cè)數(shù)據(jù)界面、儲能系統(tǒng)PCS直流側(cè)數(shù)據(jù)界面、
儲能系統(tǒng)PCS狀態(tài)界面展示對PCS狀態(tài)信息,主要包括通訊狀態(tài)、運行狀態(tài)、STS運行狀態(tài)及STS故障告警等。
儲能電池狀態(tài)界面展示對BMS狀態(tài)信息,主要包括儲能電池的運行狀態(tài)、系統(tǒng)信息、數(shù)據(jù)信息以及告警信息等,同時展示當前儲能電池的SOC信息。
儲能電池簇運行數(shù)據(jù)界面展示對電池簇信息,主要包括儲能各模組的電芯電壓與溫度,并展示當前電芯的*大、*小電壓、溫度值及所對應的位置。
風電系統(tǒng)界面展示對風電系統(tǒng)信息,主要包括逆變控制一體機直流側(cè)、交流側(cè)運行狀態(tài)監(jiān)測及報警、逆變器及電站發(fā)電量統(tǒng)計及分析、電站發(fā)電量年有效利用小時數(shù)統(tǒng)計、發(fā)電收益統(tǒng)計、碳減排統(tǒng)計、風速/風力/環(huán)境溫濕度監(jiān)測、發(fā)電功率模擬及效率分析;同時對系統(tǒng)的總功率、電壓電流及各個逆變器的運行數(shù)據(jù)進行展示。
光伏發(fā)電預測可以通過歷史發(fā)電數(shù)據(jù)、實測數(shù)據(jù)、未來天氣預測數(shù)據(jù),對分布式發(fā)電進行短期、超短期發(fā)電功率預測,并展示合格率及誤差分析。根據(jù)功率預測可進行人工輸入或者自動生成發(fā)電計劃,便于用戶對該系統(tǒng)新能源發(fā)電的集中管控。
光伏發(fā)電策略配置可以根據(jù)發(fā)電數(shù)據(jù)、儲能系統(tǒng)容量、負荷需求及分時電價信息,進行系統(tǒng)運行模式的設置及不同控制策略配置。如削峰填谷、周期計劃、需量控制、有序充電、動態(tài)擴容等。
運行報表,查詢各子系統(tǒng)、回路或設備指定時間的運行參數(shù)
具有實時報警功能,系統(tǒng)能夠?qū)Ω髯酉到y(tǒng)中的逆變器、雙向變流器的啟動和關閉等遙信變位,及設備內(nèi)部的保護動作或事故跳閘時應能發(fā)出告警,應能實時顯示告警事件或跳閘事件,包括保護事件名稱、保護動作時刻;以彈窗、聲音、短信和電話等形式通知相關人員。
電能質(zhì)量監(jiān)測,可以對整個微電網(wǎng)系統(tǒng)的電能質(zhì)量包括穩(wěn)態(tài)狀態(tài)和暫態(tài)狀態(tài)進行持續(xù)監(jiān)測,使管理人員實時掌握供電系統(tǒng)電能質(zhì)量情況,以便及時發(fā)現(xiàn)和消除供電不穩(wěn)定因素。
1)在供電系統(tǒng)主界面上應能實時顯示各電能質(zhì)量監(jiān)測點的監(jiān)測裝置通信狀態(tài)、各監(jiān)測點的A/B/C相電壓總畸變率、三相電壓不平衡度和正序/負序/零序電壓值、三相電流不平衡度和正序/負序/零序電流值;
2)諧波分析功能:A/B/C三相電壓總諧波畸變率、電流總諧波畸變率、奇次諧波電壓總畸變率、奇次諧波電流總畸變率、偶次諧波電壓總畸變率、偶次諧波電流總畸變率;應能以柱狀圖展示2-63次諧波電壓含有率、2-63次諧波電壓含有率、0.5~63.5次間諧波電壓含有率、0.5~63.5次間諧波電流含有率;
3)電壓波動與閃變:A/B/C三相電壓波動值、電壓短閃變值、電壓長閃變值;三相電壓波動曲線、短閃變曲線和長閃變曲線;應能顯示電壓偏差與頻率偏差;
4)功率與電能計量:A/B/C三相有功功率、無功功率和視在功率;應能顯示三相總有功功率、總無功功率、總視在功率和總功率因素;應能提供有功負荷曲線,包括日有功負荷曲線(折線型)和年有功負荷曲線(折線型);
5)電壓暫態(tài)監(jiān)測:在電能質(zhì)量暫態(tài)事件如電壓暫升、電壓暫降、短時中斷發(fā)生時,系統(tǒng)應能產(chǎn)生告警并查看相應暫態(tài)事件發(fā)生前后的波形。
6)電能質(zhì)量數(shù)據(jù)統(tǒng)計:系統(tǒng)應能顯示1min統(tǒng)計整2h存儲的統(tǒng)計數(shù)據(jù),包括均值、*大值、*小值、95%概率值、方均根值。
7)事件記錄查看功能:事件記錄應包含事件名稱、狀態(tài)(動作或返回)、波形號、越限值、故障持續(xù)時間、事件發(fā)生的時間。
8)故障錄波
5.結束語
基于蓄電池與超級電容器的特性,建立微電網(wǎng)的復合儲能系統(tǒng),提出微電網(wǎng)并網(wǎng)與孤島運行方式平穩(wěn)切換的控制策略,通過仿真實驗得出如下結論:
1)復合儲能兼具能量型儲能及功率型儲能的優(yōu)點,且控制方式靈活、方便。對于實現(xiàn)微電網(wǎng)能量的瞬時平衡,維持微電網(wǎng)的穩(wěn)定運行具有重要作用;
2)多層次的控制模式,在運行方式切換前后,使微電網(wǎng)的頻率、電壓都能保持在允許的范圍之內(nèi),實現(xiàn)平滑切換;
3)在線檢測頻率、電壓,切換時對電網(wǎng)的沖擊很小,保證電網(wǎng)電能質(zhì)量。
在下一步的研究中,將考慮超級電容器與蓄電池的容量優(yōu)化配置及微電網(wǎng)系統(tǒng)經(jīng)濟性的改善。